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S P I R A L  W A V E S  O N  T H E  S U R F A C E  O F  A F I L M  D R A I N I N G  

A L O N G  T H E  S U R F A C E  O F  A V E R T I C A L  C Y L I N D E R  

O .  Y u .  T s v e l o d u b  UDC 532.51 

In this paper, we investigate spiral waves on the surface of a viscous liquid film draining along a vertical tube under 

the influence of the gravitational force. For this we consider some special solutions of the model equation describing three- 

dimensional long-wavelength perturbations in such a film for the low flow velocity case. 

Perturbations on the surface of a cylindrical film have been investigated earlier, but generally only the case of axially 

symmetric perturbations has been studied. 

Let us consider the flow of a film of viscous liquid along the outer surface of a cylinder of radius R. For any flow 

velocities, the Navier-Stokes equations have solutions with film thickness h o = const. Let us restrict ourselves to the case 

of large cylinders, for which the relaxation ho/R << I is valid. In order to make this assumption convenient to use, when 

writing the equations of motion in a cylindrical coordinate system, instead of the radial coordinate r we will use the new 

variable (Fig. 1). 

r' = r -  R. (1) 

In the following, we will omit the prime. 

Let V 0 be the characteristic velocity for the non-wave flow regime for a film with thickness h o, L is the characteristic 

longitudinal dimension of the perturbation. 

Using ho/V 0, V o, and pgh o as the time, velocity, and pressure scales and using h o and L as the length scales in the 

r and x directions respectively, let us wrke the equations of motion for the film in dimensionless form 

au I 1 0p 1 
- -  + ( V V ) u  . . . .  ~ - -  + Au, 
at Fr  F r  8x ~ e  

36' -- ~ . _ ~ _ W 2  1 dp 1 ~2 232 3w 
- -  + ( V V ) o  . . . .  + [ Ao  - 
0t 1 + 3r  Fr  Or ~ e  (1 + ~r)  2r (1 + dir) 2 ~ ] '  

3W r I r ap 1 ~2W 2dJ 2 OtY 
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~v ~ "6 aw Ou 
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where 

A - 

a 6 a a 
v v  = v - -  + - - w - - -  + e u - - ;  

Or I + ~ r  o~p ax 
I 8 2 ~;~ a 2 a 2 di a 

+ + , 2 -  + _ _  . 

1 + fir 0r 2 (1 + ~r) 2 ax 2 1 + 6r Or Or " 

The dynamic boundary conditions on the solid (r = 0) and the free boundary respectively have the form 

u = o = w = O  ( r = O ) ;  (3) 
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Fig. 1 

f/i 
[ p - 6 W e ( K ~ +  K2) I F r -  cr'knk = 0 ( r =  h). (4) 

In (4), the n i are the components of the unit vector normal to the free surface: 

6 ah e ah" (1 (l + 6h) 2 ( n ,  n , ,  n )  - (1, - i + 6 h - ' ~ '  - ~ x )  / + ~ + e2 1 /2  

the K i are the dimensionless principal curvatures: 

~2 
K l + K 2 = {(1 + 6h )  2(1  + e2h~) - ~ - ( 1  + 6 h ) 3 h  - 8 ( I  + c ) h ) h  

+ 2~2h2 - 6e2(1 + 6h)[h~h2,, -- 2h h , h  + h h ~ ] } /  

/ ( ( l  + ah)~(l + dh~) + ~2h2)'/~ 

(here and below, the subscript on h means differentiation with respect to the corresponding variable); the Oik are the components 

of the stress tensor: 

2 &., 1 r 6 au o~ 

o "  Re dr '  ~ Re 1 + 6r  ~o + ar / 

~ ' =  Re + e  , ~  , ~ e  1 + 6 r b P  

l a w  6 an %, = - - ( ~ - -  + - - ~ )  
Re  Ox 1 + 6r  ' 

2 au 
a x . r - ~ - - - ~  - .  

Re /Ix 

! + 

On the free boundary, the kinematic condition is also satisfied 

ah 6 dh ah 

~ +  1 +  ax at ~ ~  + ~ u - = "  ( r = h )  (5) 

In (2)-(5), the following appear as parameters: e = ha/L, 8 = ha/R, the Reynolds number Re = hoVoh,, the Froude 
number Fr = Vo2/gh O, the Weber number We = a/pgho2. Here v is the kinematic viscosity coefficient; g is the acceleration 

of free fall; ~r is the surface tension coefficient; p is the density of the liquid. 

Restricting ourselves to consideration of long-wavelength perturbations, we will assume that e << 1, while the order 

of ~ is no greater than e, i.e., 

6 = Se,  S ~< 1. (6) 

Let us look for the solution to the problem (2)-(5) in the form of series in e: 

U = It 0 -I- eU 1 + . . . ,  V---- eo 1 + . . . .  

w = e w  1 + . . . ,  p = ep l  + . . .  

(7) 
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Substituting (7) into the original system and equating (taking into account (6)) the coefficients for identical powers of 

e to zero, after tedious calculations it is not difficult to obtain expressions for the velocities: 

Re r 2 
% - ( r h  - 7) 

Fr ' 

u, = ~ h h - 6 h '  Re Wee2 [S2h ~ + zXh 1 
Fr 

+ s ~  - ~ - h +  r +--firh - ~ h  ~, 

Re r 2 

u 2 = ~rWe~ -~(S2Ah + ASh) - ~ ( S2hAh + hA2h + S2h,Ah, 
(8) 

+ b a h  + S h; + R~ : 

- Fr ~ -  4 h  - h, h h , 

r 2 
w, = S~rWee (S h + 

~2 2 

Here A = bax 2 + S ~ a~i" In this case we assumed that the following relations are valid: 

Wee 2 -  l ,  Re ~< 1. (9) 

Substituting (8) into the kinematic condition (5) and restricting ourselves to considering terms up to order e 2 inclusively, 

for the perturbed surface h we have 

Re { Re h 3 Re 2 F[~ 3 5 4] 
hi + e"~r h2h + e 2 S ~ r 3 h x  + ~ h hh  - 2h,  h 

- F--- ~ ~ h  ~ + ~we~'l(s~h~ + ~ h ) h  ~ 

1 2 3 + "~(S h Ah + h3A2h) + S2h2h,,Ah, + S4h~h 2 ]} = 0. 

(10) 

In the following, let us restrict ourselves to consideration of weakly nonlinear perturbations; therefore we represent 

the function h in the form 

h =  1 + el l .  (11) 

Using the method of different time scales, let us introduce a set of new variables: 

t = e~t, n = 1,2 . . . .  (12) 

We note that as the characteristic velocity V o we will take the value of the velocity u o on the free surface for the non- 

wave flow regime. From this it follows that 

R e / F r  = 2. (13) 
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Substituting (11) and (12) into (10) and equating the coefficients for identical powers of e to zero, taking into account 

(9) and (13), from the first approximation we obtain 

aH aH 
- - + 2 - - = 0 ,  
at 1 0x 

i.e., 

H =  H(~) ,~  = x -  2t r 

where 

Considering the second approximation, for determination of H we arrive at the nonlinear equation 

OH 2 OH OH 8 O2H 2 z 2 
- -  + "~S + + ~ R e  + ~Wee  ( A H S  + = or2 ~ 4 ~ -  ~ -  t ,2~  0, (14) 

A _ - - - ~ + S  2 -  2" 

Now it is pertinent to explain more precisely how we choose the longitudinal length scale L. If in (14) we neglect the 

nonlinear term, then from the linearized equation it follows that the trivial solution H = 0 is unstable relative to perturbations 

of the form 

exp(/a(~ - ct2) + tn~o) 

with components of the wave vector (a,  n) satisfying the inequality 

Rea2 + 2Wee2{S2(a2 + $2n2 ) _ (a s + $2n2)2 } > 0 
15 3 (15) 

(the n are natural numbers, the ~ are real numbers). 

The region of existence of damped perturbations (c i < 0) is determined not by (15) but by an inequality of the opposite 

sign ( < ). Accordingly, the wave numbers of neutral perturbations should satisfy the equation 

8__ Rea2 + 2 Wec2{S2(a2 + S2nS ) _ (a  s + $2n2)2 } = 0. (16) 
15 

Let us determine the characteristic longitudinal length scale L so that the neutral wave number a n of axially symmetric 

perturbations (n = 0) will be equal to unity: 

a = 1. (17) 

Then from (16), taking into account (6), it follows that 

and accordingly 

/to = 6(1 + 0,8Re/We~2) V2 (18) 

L 
S -- - -- - -  ffi 1 / ( 1  + 0.8Re/We~2) v2 < 1. 

e R 

The normalization (17) is rather convenient. 

Let us introduce a new coordinate 

and let us make the substitution: 

2 
~, -- ~ - ~st~ 
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2 2 = ~Wee H t. r = ~ W e z t  2 ,m 2 , (19) 

Then Eq. (14), taking into account relation (19), can be rewritten (omitting the subscript on Ht): 

++ . +  
-~- + 4H-~-  + - ~ -  + ~ + + S' H = 0. (20) 

Eq. (14) was apparently obtained for the first time in [1]. Of course, in that paper other characteristic scales and 
accordingly other parameters were used in its derivation and further analysis. For our purposes, the form in (20) is more 
convenient. 

Thus investigation of perturbations in a film draining along the surface of a vertical cylinder, within the constraints 
used, is reduced to analysis of the solutions of Eq. (20). In the case of axially symmetric solutions (H = H(r,  ~)), it is 
transformed to the well known equation which often is called the Kuramoto-Sivashinsky equation: 

8H aH 02H O+H 
+ 4 H - ~ - + ~ +  a~ + = 0 (21) 

(strictly speaking, there is a difference between the nonlinear terms in the Kuramoto-Sivashinsky equation and (21)). 

When going in the limit from a cylindrical to a flat surface, S ~ 0. In this case introducing, instead of the coordinate 
~o, the new coordinate z = R C L ,  from Eq. (20) we go to 

0 H -~- + 4H~--  + - ~ -  + + = 0. (22) 

Equation (22) was obtained in [2] in an investigation of three-dimensional perturbations on a vertical flat film. 

In this paper, let us restrict ourselves to looking for solutions of the spiral type for Eq. (20), i.e., solutions for which 
the following is valid: 

H = H(r,  r/), r/ = ~ + y~. (23) 

Since ~ is the angular coordinate, any solution of Eq. (20) should be periodic with respect to ~o, with period fitting 
into the interval 0-2~r an integral number of times (n >__ 1). Therefore it is clear that if solutions of type (23) exist for Eq. (20), 
then they should be periodic also with respect to the variable 77. 

Let the solution (23) exist and have period X. Clearly the period with respect to the variable ~ also will be X. In this 

case, as has already been noted, the period with respect to the variable ~ should be equal to 27r/n. It is easy to understand that, 
in order for this to be possible, the value of 3' in (23) should not be arbitrary, but rather should satisfy the relation 

,l = 2ary /n ,  or n / y  = a 

(a is the wave number). 

In order to determine solutions of the spiral type (23) for Eq. (20), we use the substitution: 

H(r,  1./) = AHt ( r l ,  r/t ), 

rl -- ~ ' ,  r/l ---- pr/, 

p = (1 + S4y2)l/a//(l + S2y2), 74 = p2(1 + S4y'), A = ~ / p .  

(24) 

(25) 

Then for H1, Eq. (20) is rewritten as follows: 

OH l ~H t ~2Ht a4Hl 
ah + 4H 1 ~ +  a,/--~l + ~ = 0  (26) 

(i.e., for the function H 1 we have Eq. (21)). 

Equation (26) at present is the classical equation. Often we arrive at this equation when describing wave processes in 

different actively dissipative media. We know that its solutions also include periodic traveling-wave solutions. If  for some 
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periodic solution H 1 the relations (24) and (26) can be satisfied, then the solution H connected with it from (23) will also be 

the corresponding spiral solution to Eq. (20). 

Let c~ x be the wave number for the solution H, while c~ is the wave number for the solution H 1. It is easy to show 

that in order for relations (24) and (25) to be satisfied, these wave numbers should satisfy the equation 

0~(1~ 2 + S4tl 2) = (aX 2 + $2t12) 2. 
(27) 

Thus the problem is reduced to determining the unknown wave number ~x, using formula (27) for the known solution 

H 1 with wave number ot~. The corresponding solution H is then determined from formulas (23) and (25). Since in (27) n is 

present only in the odd powers, it is clear that if Eq. (27) has a solution %, then it is the same for +n.  This means that if a 

spiral solution exists with a left-handed twist (as we move along a level of constant phase toward an increase in the coordinate 

~, rotation with respect to the coordinate ~o is accomplished in a counterclockwise direction), then there is also a solution 

symmetric to it with a right-handed twist. Therefore in the following, we will not talk about solutions with n < 0. 

It is well known (see, for example, [3-6]) that Eq. (26) has a stationary traveling-wave solution of the form 

H x = Ht(r/t - -  crl). (28) 

The solutions to (28) include a countable set of periodic and soliton solutions. As is easily seen from (27), no spiral 

solutions corresponding to soliton solutions for H 1 exist. 

The wave numbers ce~ of the entire set of periodic solutions (28) lies in the interval 0-1. This set is divided into two 

classes. The first class includes solutions with values of the phase velocity c = 0. They all are antisymmetric. Among them 

there exists one family of solutions (traditionally called the first family) which branches with infinitesimally small amplitude 

from the trivial solution for ~ = 1 and continuous to the wave number ce~ = 0.4979. For waves of this family, there is an 

interval of wave numbers (0.77 < ~ < 0.84) stable to all perturbations. Wave numbers of the other antisymmetric families 

are less than 0.42. 

For solutions of the second type, the values of the phase velocity c ~ 0 (and by virtue of the symmetry of Eq. (26), 
it is sufficient to talk about only solutions with c > 0). The wave numbers for these waves lie in the interval 0-0.554, In the 

limit when the wave number goes to zero, these periodic solutions go to solitary waves. 

For solutions of  (-25) corresponding to the antisymmetric solutions, the surface of the film is represented by spiral cords 

in which the hills are similar to the valleys. For solutions with c > 0, there is no such similarity. The possible number of cords 

n and the step of such a spiral wave ~, = 2r x depend on the values of the parameter S. In fact, let us write out explicitly 

the roots of the quadratic equation (27): 

2 _ 2 S 2 n  2 + l(a~ - 2S2n2) 2 - 4S4n2 (n  2 - a ~ ) 1 ~ / ~ } / 2 .  (29) a 2 = { 0:,~ 
Xl,2 

Since we need the values of c~ to satisfy the inequality 

0 ~ < a ~  < 1, 

clearly if these roots are real then they are either both negative or both positive. In the latter case, we have two different wave 

numbers ~x corresponding to the same c~, i.e., one "flat" solution (26) "generates" two stationary traveling spiral solutions 

(23) (with the same n > 0), differing in wavelengths and slope of the spirals. For 0 (the angle between the axis of the 

longitudinal coordinates ~ and the lines of constant phase 71 = const), the following relation is valid: 

tgO = a x /  n .  

From (29) it is easy to see that for fixed values of n and S, the value of ~x~ will be the greatest while the value of C~x2 

will be the smallest for c~ = 1. On the (ez x, S) plane, these values outline the region of existence of  the spiral solutions with 

the corresponding azimuthal number n. In Fig. 2, this region is found within the curve 1. here a, b correspond to n = 1 and 

2. As we see from (29) and Fig. 2a, for n = 1 the minimum possible wave number of the spiral wave is o~ x = 0, i.e., for any 

S for which such solutions exist, we can construct a spiral solution with as large a step as desired along the longitudinal 

coordinate. For any n _> 2 and any allowable S, the spiral solution cannot have an angle 0 less than some finite angle. 

The interval of  allowable values of S for these solutions is determined by the inequality 
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S 2 ~ S 2 . = In - (n 2 - 1)1'21/2n. (30) 

For S., when c~ = 1 we have 

axt = ax2 [(1 - $2n2)/21 v2. 

From (30) it follows that for sufficiently large values of S (S > S 1 = 1/~23, all spiral wave regimes are forbidden. 

As we see from (6) and (18), this is the case of rather "small" cylinders. For values of S > S 2 = $I(I  - 3 ~ )  in,  regimes 

with number of cords n > 1 are forbidden (i.e., for "moderately" large cylinders, spiral regimes are allowed only with period 

27r along the angular coordinate) etc. With a decrease in S, both the interval of possible wave numbers for such regimes and 

also the allowed number of  their cords increase. 

If for a given value of S there is a finite interval of allowable wave numbers c~ x, then (as is easy to understand from 

(29)) there exists ~ .  < 1, for which ~xl = t~x2" This means that the wave numbers of the corresponding fiat solution (26) 

lie in the interval c% _< ce~ <_ 1. This is explained by the curves in Fig. 2. They all represent lines c~ = const, and 

specifically: curves 1-4 correspond to c~ = 1, 0.84, 0.77, 0.554. 

Knowing the dependence S = S(c~.), we can determine in particular the families of each type of all the possible 

solutions to (26) that can be generated by the corresponding spiral solutions (23). Thus in Fig. 3, such a dependence is 

represented by curve 1 for n = 1; the dependence c~ x = C~x(S(a~,), c%) is shown by curve 2. From these data it is easy to 

understand, for example, that only the first family of solutions to (26) will give spiral solutions (this will be for those values 

of S for which o~. _> 0.554), for which values of  S stable spiral regimes are possible (0.77 < c~. <__ 0.84), etc. 

In Fig. 2, the region of stability is shown by the hatching. We see that for values of  S < S+ = S ( ~ .  = 0.77), there 

are two regions of wave numbers t~ x stable to all spiral perturbations. These regions merge into one for S > S +. 

The region of existence of spiral solutions having phase velocity grater than the velocity of  infinitesimally small 

perturbations (solutions to which correspond the solutions of (26) with c > 0) is considerably narrower. It is shown in Fig. 

2 by the curve 4. 

Thus, by using relations (23)-(27), we can obtain considerable information about the spiral wave regimes on the surface 

of vertical cylinders. Considering that the parameter S, according to (6) and (18), represents a combination of geometric and 

dynamic factors, within the framework of this model we obtain in particular a qualitatively reasonable result: for fixed values 

of the Reynolds number, the wave pattern of  possible spiral waves is more abundant as we consider larger cylinders (S 
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decreases with an increase in the radius of the cylinder R). Such a conclusion is valid if for a fixed cylinder we increase the 

flow velocity of the liquid. 
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